Document Type

Article

Publication Date

10-2014

Abstract

Prediction of mortality has focused on disease and frailty, although antecedent biomarkers may herald broad physiological decline. Olfaction, an ancestral chemical system, is a strong candidate biomarker because it is linked to diverse physiological processes. We sought to determine if olfactory dysfunction is a harbinger of 5-year mortality in the National Social Life, Health and Aging Project [NSHAP], a nationally representative sample of older U.S. adults. 3,005 community-dwelling adults aged 57–85 were studied in 2005–6 (Wave 1) and their mortality determined in 2010–11 (Wave 2). Olfactory dysfunction, determined objectively at Wave 1, was used to estimate the odds of 5-year, all cause mortality via logistic regression, controlling for demographics and health factors. Mortality for anosmic older adults was four times that of normosmic individuals while hyposmic individuals had intermediate mortality (p,0.001), a ‘‘dose-dependent’’ effect present across the age range. In a comprehensive model that included potential confounding factors, anosmic older adults had over three times the odds of death compared to normosmic individuals (OR, 3.37 [95%CI 2.04, 5.57]), higher than and independent of known leading causes of death, and did not result from the following mechanisms: nutrition, cognitive function, mental health, smoking and alcohol abuse or frailty. Olfactory function is thus one of the strongest predictors of 5-year mortality and may serve as a bellwether for slowed cellular regeneration or as a marker of cumulative toxic environmental exposures. This finding provides clues for pinpointing an underlying mechanism related to a fundamental component of the aging process.

Version

The article available for download here is the publisher version. Locate the version of record using the DOI below

DOI

http://dx.doi.org/10.1371/journal.pone.0107541

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

PLOS One

Volume Number

9

Issue Number

10

First Page

1

Last Page

9

Share

COinS