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RESEARCH ARTICLE
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David W. Kern1*, L. Philip Schumm2, Kristen E. Wroblewski2, Jayant M. Pinto3,
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1 Institute for Mind and Biology and Department of Comparative Human Development, The University of
Chicago, Chicago, IL, United States of America, 2 Department of Public Health Sciences, The University of
Chicago, Chicago, IL, United States of America, 3 Section of Otolaryngology-Head and Neck Surgery,
Department of Surgery, The University of Chicago, Chicago, IL, United States of America, 4 Interdisciplinary
Center Smell & Taste, ENT Clinic, TU Dresden, Germany

* dkern@uchicago.edu

Abstract
Current methods of olfactory sensitivity testing are logistically challenging and therefore in-

feasible for use in in-home surveys and other field settings. We developed a fast, easy and

reliable method of assessing olfactory thresholds, and used it in the first study of olfactory

sensitivity in a nationally representative sample of U.S. home-dwelling older adults. We vali-

dated our method via computer simulation together with a model estimated from 590 nor-

mosmics. Simulated subjects were assigned n-butanol thresholds drawn from the

estimated normosmic distribution and based on these and the model, we simulated admin-

istration of both the staircase and constant stimuli methods. Our results replicate both the

correlation between the two methods and their reliability as previously reported by studies

using human subjects. Further simulations evaluated the reliability of different constant sti-

muli protocols, varying both the range of dilutions and number of stimuli (6–16). Six appro-

priately chosen dilutions were sufficient for good reliability (0.67) in normosmic subjects.

Finally, we applied our method to design a 5-minute, in-home assessment of older adults

(National Social Life, Health and Aging Project, or NSHAP), which had comparable reliabili-

ty (0.56), despite many subjects having estimated thresholds above the strongest dilution.

Thus, testing with a fast, 6-item constant stimuli protocol is informative, and permits olfacto-

ry testing in previously inaccessible research settings.

Introduction
Current standardized, validated olfactory tests to determine olfactory sensitivity using psycho-
physical measures require many repeated and varied dilution presentations depending on the
subject’s sensitivity. A common method for evaluating olfactory sensitivity is the Sniffin’ Sticks
n-butanol threshold test (Burghart GmbH, Wedel, Germany; see [1,2]). This test uses a 3-
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alternative, forced-choice, single staircase method to determine sensitivity [1,3]. The time re-
quired to administer the threshold test depends on a subject’s performance and may be pro-
longed, particularly for those with olfactory dysfunction. In particular, population-based
epidemiological studies—often conducted in the home by interviewers without specialized
training in administering psychophysical measures—impose constraints of time and resources
that preclude the use of gold-standard measures of olfactory assessment such as the
staircase method.

Successful efforts to shorten the Sniffin’ Sticks olfactory sensitivity protocol using the meth-
od of constant stimuli [4] have been made [5,6]. While these methods have advanced the field
of olfactory testing, they still require presentation of at least 16 dilutions and are therefore not
practical in most field or survey settings due to time constraints and both subject and
interviewer burden.

Sniffin’ Sticks Threshold Test
The Sniffin’ Sticks threshold test involves 16 distinct dilutions administered using the staircase
method. The test begins at one of the two weakest dilutions (pen 15 or 16), chosen randomly.
During each presentation three felt tip pens are offered to the subject: one pen contains the tar-
get odor (a specific dilution of n-butanol) while the other two are blank, with the relative posi-
tion of the target rotated with each presentation. Subjects are asked to indicate which of the
three pens contains the target odor. Each time a subject correctly detects the odor at a given di-
lution, that same dilution is presented a second time in case the original correct response was
due to chance alone (as expected at least one third of the time). Following a second consecutive
correct response at a given dilution, the test is made more difficult by presenting a weaker dilu-
tion that is half the strength of the previous one. If at any point the subject gives an incorrect re-
sponse, the test is made easier and a stronger dilution that is twice the strength of the previous
is presented. Each change from weaker to stronger or stronger to weaker is considered a “rever-
sal.” The Sniffin’ Sticks staircase protocol is administered until 7 reversals are observed. The di-
lutions presented at each of the last 4 reversals are then averaged to estimate that subject’s
threshold [1,3] (hereafter referred to as the staircase-estimated threshold). This method is ac-
curate and reliable for subjects whose thresholds fall within the range of dilutions used, but
also time and labor intensive which is prohibitive in many settings.

Staircase Method vs. Method of Constant Stimuli
The staircase method is dynamic, requiring the experimenter (or interviewer) to modify which
dilutions are presented based on the subject’s previous responses, and similar to other psycho-
physical methods relies on the subject’s response history to determine when the procedure
ends [1,3,7,8]. Although yielding a reliable threshold estimate, the method is relatively complex
and requires significant time (up to 20 minutes) and training to administer [1].

In contrast, the method of constant stimuli uses a fixed number of presentations. Each sub-
ject receives the same set of stimuli, though their order may be varied between subjects (ideally
in a random manner) to avoid bias due to possible order effects. While this method is typically
less efficient than adaptive methods (which administer a higher proportion of stimuli near
each specific subject’s threshold), it is considerably easier to administer and, unlike the staircase
method, administers the same total number of stimuli to each subject.

Lötsch and colleagues [6] demonstrated that thresholds obtained using the method of con-
stant stimuli with 16 dilutions are strongly correlated with those obtained using the staircase
method (r = 0.84). Further, the method of constant stimuli exhibited similarly good test-retest
reliability (0.79 versus 0.82 for staircase). They administered the Sniffin’ Sticks threshold test
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utilizing the staircase method to 100 subjects using phenyl ethyl alcohol (PEA), another odor-
ant commonly used in this staircase threshold test. To the same 100 subjects, they also adminis-
tered a constant stimuli version of the threshold test using 16 dilutions. Each dilution was
administered once in random order, and the threshold (defined as the dilution yielding a cor-
rect response probability of 2

3
) was estimated separately for each subject using an Item-response

Theory (IRT) model (described below).
Lötsch et al. demonstrated that the method of constant stimuli can be applied to olfaction

threshold testing yielding reliable validated data. Although shorter than the staircase method,
testing 16 dilutions still requires the presentation of 48 separate pens (16 targets and 32 blanks).
See also Wise et al. [9] who investigate two alternative methods for reducing the time required
to measure olfactory sensitivity, both of which still require a relatively large total number
of stimuli.

Study Overview
Our goal was to design a shorter, easier olfactory threshold test suitable for survey studies and
yet accurate and reliable enough for scientific research. Such a test would permit incorporating
olfactory threshold assessment into existing large, population-based studies, thereby allowing
olfaction research among both the general population and previously understudied subpopula-
tions, as well as interdisciplinary research on the relationships between olfactory function and
physical and mental health. We accomplished this goal in three steps: (1) We developed an IRT
model for estimating olfactory thresholds using data from either the staircase or constant sti-
muli protocols, and validated it using previously collected staircase data from 590 normosmics;
(2) We used computer simulations based on the model to replicate the results of a previous
study in human subjects comparing staircase and constant stimuli protocols, and to examine
the effects of reducing the number of constant stimuli (dilutions) used; and (3) We developed
and administered a 6-dilution constant stimuli protocol to a representative sample of the
home-dwelling, older adult population of the United States, and used the simulation-based
method in (2) to evaluate the accuracy and reliability of the resulting data.

Methods

Item Response Theory (IRT) model
As described above, the staircase method is usually scored by averaging the dilutions corre-
sponding to the last four reversals to estimate an individual’s true underlying threshold—an
approach not available following the administration of constant stimuli. An alternative ap-
proach, applicable to data from either the staircase or constant stimuli method, is to fit a statis-
tical model to the data from which an estimate of the true underlying threshold may be
obtained. When used with staircase data, this approach is more efficient because it uses a sub-
ject’s entire response history (instead of just the last four reversals) to estimate his or
her threshold.

A common model for such data is a logistic IRT model in which the probability of correctly
identifying the odorant pen increases monotonically with increasing concentration, from a
lower asymptote of 1

3
(for concentrations that are undetectable by the subject and therefore

equally likely to be selected as each of the two blank pens) to an upper asymptote of one (for
concentrations that are always detected). This model may be written as

PðYij ¼ 1Þ ¼ 1

3
þ 2

3
Logit�1ðai � bdijÞ ð1Þ
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where Yij denotes the response (1 for correct or 0 for incorrect) by the ith subject for the jth
presentation with dilution step dij, β is a slope parameter describing the rate at which the prob-
ability of a correct response decreases with increasing dilution, αi is a subject-specific intercept
describing the subject’s underlying olfactory ability, and Logit−1(↺) is the inverse logistic func-
tion. For the Sniffin’ Sticks threshold test, dij ranges from 1 (4% solution) to 16 (4% × 1/215 =
1.22 ppm). The model may be fit separately to each subject’s data (as in [6]) or simultaneously
to the data from multiple subjects. The latter involves modeling the parameters αi as drawn
from an underlying probability distribution (typically taken to be the Normal distribution); the
resulting model is known as a Generalized Linear Latent and Mixed Model (GLLAMM) [10].
In the analyses reported below, this model was fit in Stata release 13 [11] using the gllamm
package release date September 11, 2011 [12].

Setting P(Yij = 1) to 2
3
in Equation (1) and solving for dij yields αi / β, which corresponds to

the threshold for subject i. Thus, threshold estimates can be obtained after fitting the model by
using estimates of each individual’s underlying olfactory ability (α̂i) (obtained, for example, via
empirical Bayes methods) and the estimated slope (β^). Thesemodel-estimated thresholds repre-
sent the point on the dilution-response curve corresponding to a 2

3
probability of a correct re-

sponse, and are therefore comparable to the staircase-estimated threshold, which estimates the
same point on the dilution-response curve by taking the average of the last four reversals.

We fit the GLLAMMmodel described above to previously collected n-butanol Sniffin’ Sticks
threshold data obtained via the staircase method from 590 normosmic subjects (all of whom
were tested at the ENT-Department of the TU Dresden) [13]. Normosmic subjects were identi-
fied based on a cumulative “TDI score,” a summation of the scores of the Threshold task, a De-
tection task, and an Identification task [14].

Examining the Properties of Alternative Protocols Using Computer
Simulation
Lötsch et al. [6] demonstrated that constant stimuli administration of 16 dilutions may be used
to shorten and simplify the assessment of olfactory threshold and still achieve high reliability,
which raises several additional questions. Among these are: (1) Can the instrument be short-
ened further, for use in settings with stringent time and/or other constraints; (2) Given a fixed
(possibly smaller) number of stimuli, what is the optimal subset of dilutions to choose relative
to the distribution of olfactory abilities in the population being studied; and (3) Can one esti-
mate the reliability of a given constant stimuli protocol without conducting a separate human
subjects validation study?

To answer these questions, we developed software for simulating the administration of both
the staircase method and the method of constant stimuli to a sample of virtual subjects with ol-
factory abilities drawn from a specified distribution. By using a distribution chosen to match
that of a target population (ideally estimated from previously collected data or from the exist-
ing literature) and by varying the number and dilutions of the stimuli used, we can evaluate
and compare the measurement properties of several constant stimuli designs. This procedure
can thus be used both to design a new study and to evaluate the properties of protocols used in
previous studies.

Application to a Population-Based Study of Aging
The National Social Life, Health and Aging Project (NSHAP) is a U.S. national longitudinal
study of health and aging, with baseline data collected from a probability sample of 3,005 adults
aged 57–85 in 2005–6 (Wave 1). A follow-up including all respondents still living and their
spouses/partners was conducted in 2010–11 (Wave 2). Waves 1 and 2 of NSHAP were
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approved by the Institutional Review Boards of The University of Chicago and the National
Opinion Research Center (NORC); all respondents provided written, informed consent. The
weighted distributions of demographic variables in the NSHAP sample closely match those
from the U.S. 2002 Current Population Survey, confirming that the NSHAP sample is repre-
sentative of the U.S. population of home-dwelling, older adults [15].

Odor identification was measured in Wave 1 [16,17]. At Wave 2 we again measured odor
identification and added a threshold measurement to permit the first ever estimates of olfactory
threshold for this population. Unfortunately, the omnibus nature of the study which includes a
lengthy questionnaire, several physiological measurements and collection of several biological
samples, all conducted in the home, precluded use of the staircase method. Specifically, the
study did not allow the time required for the interviewers—who did not have training or expe-
rience in the administration of psychophysical measurements—to administer the staircase
method or even a 16-dilution constant stimuli protocol, both of which would have exceeded
the 5 minutes available. Further, the interviewers were limited in their ability to transport addi-
tional supplies to respondents’ homes, given all of the other materials necessary to complete
the interview. Thus, we had to develop a shorter and simpler method of olfactory threshold
that reduced both interviewer and respondent burden.

NSHAP Threshold Protocol
Although there were no existing data on olfactory sensitivity in the U.S. population of older
adults, based on previous threshold testing in this age group [13,18] and results from the odor
identification data in Wave 1, we anticipated that the distribution of thresholds would have a
considerably lower mean than for younger adults. Thus, we selected the following 6 dilutions
of n-butanol to target the expected distribution of thresholds: 0.13%, 0.25%, 0.50%, 2.0%, 4.0%
and 8.0%, which correspond to dilution steps 6, 5, 4, 2, 1 and 0 in the Sniffin’ Sticks threshold
test. Although pen 1 (4% n-butanol) is the strongest dilution used as part of the Sniffin’ Sticks
threshold test, given the expected prevalence of olfactory dysfunction in NSHAP’s older adult
population, we added the 8% n-butanol pen (pen 0) into our protocol to enhance our ability to
discriminate among those with dysfunction.

These target dilutions were each administered along with two additional blank pens, in
order of increasing concentration (from pen 6 to pen 0) to minimize the possibility that a rela-
tively strong concentration might subsequently make it more difficult to detect a weaker con-
centration (habituation) [19]. The position of the target pen as either the first, second, or third
pen for a given presentation was varied across the six presentations, but uniform for all respon-
dents. Although randomizing both the order in which the dilutions were administered and the
position of the target pen would have been ideal, this additional complexity would have in-
creased the time and the risk of administration error.

Unlike clinical or laboratory settings, in order to maintain cooperation and a good rapport
throughout the interview, respondents in survey studies are typically permitted to refuse to an-
swer any question, or to respond by indicating that they don’t know. Thus, although NSHAP
interviewers were instructed to encourage respondents to do their best to select a pen even if
they were not sure which was the target, some respondents still insisted that they didn’t know
or refused to answer. Not surprisingly, such responses were more common at the weakest con-
centrations. Treating such responses as incorrect would create a negative bias in the threshold
estimates, since had these respondents guessed, they would have been correct at least one-third
of the time by chance. Thus, in order to obtain a more accurate estimate of the threshold distri-
bution for use in the work described below, we used multiple imputation with an imputation
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model which specified that the probability of a correct response in these cases was 1
3
[20]. This

approach could also be used when generating estimates of individual thresholds.

Results

Validation of IRT Model Among Normosmics
Among the normosmic sample, the estimated slope parameter (β) was 1.12 (SE = 0.06), and
the mean and variance of the αi were estimated as 10.5 (SE = 0.55) and 16.6 (SE = 2.0), respec-
tively. Fig. 1A shows a histogram of the 590 staircase-estimated thresholds determined from
the average of the last four reversals, together with a Normal density curve with the same mean
and standard deviation (solid black). In addition, the distribution of thresholds (obtained by di-
viding αi by β

^) estimated from the IRT model is also plotted (grey dashed). The means of the
two distributions are nearly identical, demonstrating excellent correspondence between the
model-estimated thresholds and threshold estimates obtained using the staircase method,
thereby validating the model. As expected, the variance of the model-estimated distribution is
slightly greater, because the staircase method does not permit threshold estimates outside of
the range of dilutions administered (1–16).

Fig. 1B shows a Bland-Altman plot [21] comparing the two sets of estimates (difference be-
tween staircase-estimated and model-estimated thresholds versus the model-estimated thresh-
old) together with a LOWESS smoother. For those in the middle 50% of the model-estimated
threshold distribution (7.0–11.2), the average difference between staircase and model-estimat-
ed thresholds is only 0.16 with a standard deviation of 0.80, reflecting a relatively close corre-
spondence between the two measures despite a small, positive bias in the staircase estimates.

Fig 1. Histogram and Bland-Altman plot. A. Histogram of 590 normosmic staircase-estimated thresholds (as determined by the mean of the last 4
reversals), together with a normal density curve with the samemean and standard deviation (solid black). In addition, the distribution of estimated thresholds
from the fitted model is also plotted (dashed grey).B. Corresponding Bland-Altman plot comparing staircase-estimated thresholds and model-estimated
thresholds among the 590 normosmics together with a LOWESS smoother.

doi:10.1371/journal.pone.0118589.g001
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At the high end of the distribution of model-estimated thresholds where the odorant con-
centrations are weakest, the staircase estimates demonstrate a clear negative bias. This is due to
the fact that the maximum possible value of the staircase estimates is 16, even among those
whose true threshold may be even higher. In contrast, at the low end of the distribution where
the odorant concentrations are strongest, the staircase-estimated thresholds exhibit a positive
bias. This is due to the fact that the staircase protocol begins at the weak end of the dilutions
and works its way toward the strong end; erroneous reversals early on to a weaker dilution (re-
versing to a weaker dilution despite having a true threshold at a stronger dilution) can then re-
sult in a misleadingly weak dilution being included when computing the staircase-
estimated threshold.

Replicating Lötsch et al.
To demonstrate that our computer simulation method yields similar results to those from a
study using human subjects, we used our method to replicate the results of Lötsch et al. [6]. Fol-
lowing their protocol, we simulated the administration of both the staircase and constant sti-
muli methods with 16 dilutions to 100 subjects. Although Lötsch et al. utilized a general sample
of adults including both normosmics and those with olfactory dysfunction (approximately
18%), their publication did not report an overall mean and standard deviation of the estimated
thresholds, and thus we drew abilities for our simulated subjects from the distribution of abili-
ties estimated from the 590 normosmics described above. Given these abilities, responses were
then simulated from the model above using the estimated value of 1.12 for β. Five hundred rep-
lications were performed, each with a sample of 100 subjects.

Our simulations yielded mean reliabilities for the staircase and constant stimuli methods of
0.86 (not shown) and 0.84 (Table 1), respectively, only slightly higher than the test-retest

Table 1. Reliability of several constant stimuli protocols based on simulated administration to the 590 normosmic distribution, n = 100 subjects
with 500 replications.

Number of Stimuli 16 12 8 6 (6)x2a

Evenly Distributed Dilutions Administered 1–16 1–3, 5–7, 9–11, 13–16 2–16 (Even)b 2, 5, 8, 9, 12, 15 (2, 5, 8, 9, 12, 15)x2

Mean Reliability (SE)c 0.843 (0.001) 0.794 (0.002) 0.706 (0.003) 0.649 (0.003) 0.805 (0.002)

5%, 50%, 95% 0.789, 0.844, 0.889 0.720, 0.797, 0.850 0.607, 0.711, 0.787 0.538, 0.657, 0.741 0.739, 0.809, 0.859

% of Convergence Failures 0.2% 2.6% 29.8% 24.6% 0.6%

Centered Dilutions Administered NAd 5–16 7–14 8–13 (8–13)x2

Mean Reliability (SE) 0.805 (0.002) 0.732 (0.002) 0.660 (0.002) 0.776 (0.002)

5%, 50%, 95% 0.739, 0.807, 0.863 0.657, 0.736, 0.801 0.568, 0.668, 0.736 0.712, 0.781, 0.827

% of Convergence Failures 1.4% 1.2% 8.2% 0.0%

Tails Dilutions Administered NA 1–6, 11–16 5–8, 13–16 5–7, 14–16 (5–7, 14–16)x2

Mean Reliability (SE) 0.719 (0.003) 0.684 (0.002) 0.551 (0.003) 0.723 (0.002)

5%, 50%, 95% 0.616, 0.725, 0.802 0.586, 0.687, 0.770 0.435, 0.550, 0.660 0.645, 0.726, 0.800

% of Convergence Failures 6.0% 11.8% 29.2% 1.2%

Shifted Dilutions Administered NA 1–12 1, 3, 5, 7–11 1, 3, 5, 7, 9, 11 (1, 3, 5, 7, 9, 11)x2

Mean Reliability (SE) 0.795 (0.002) 0.732 (0.002) 0.642 (0.002) 0.783 (0.002)

5%, 50%, 95% 0.735, 0.798, 0.853 0.658, 0.735, 0.798 0.551, 0.645, 0.730 0.715, 0.789, 0.836

% of Convergence Failures 2.4% 10.0% 29.2% 0.8%

aThis configuration presents the identical 6 dilutions used for a given protocol twice for a total of 12 stimuli
bA configuration using 8 odd dilutions yielded similar results
cSE = standard error
dNA = not applicable.

doi:10.1371/journal.pone.0118589.t001
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reliabilities reported by Lötsch et al. of 0.82 and 0.79, and nearly identical to results reported by
Haehner at al. [22] who estimated a test-retest reliability of 0.85 for the staircase method when
administered to human subjects. In addition, the mean correlation between the staircase and
constant stimuli methods was 0.86, as compared to 0.84 for Lötsch et al. Of note, Lötsch et al.’s
reliability estimates were based on a single sample of 100 subjects, and may therefore reflect
some random variation (compare the sampling variability represented by the 5th and 95th per-
centiles of the reliability distributions reported in Table 1) as opposed to our estimates obtained
by averaging the results from 500 independent replications.

Our reliability estimates may also be slightly higher than their test-retest reliability estimates
due to one or more of the following: (1) variability across days in both the administrator and
the subject that is not captured in our simulation (though prior work has shown that the Snif-
fin’ Sticks are reliable with repeated testing and across days [23]), (2) possible variation in effec-
tive pen concentrations with repeated use, also not captured in our simulation (though a recent
publication [24] has demonstrated that this effect is relatively small), and (3) potential differ-
ences in reliability between PEA and n-butanol (though a publication by Croy et al. [25] sug-
gests that these odors exhibit similar reliability). In light of these differences, our results are
quite consistent with those of Lötsch et al., demonstrating the ability of our method to repro-
duce reliability estimates from studies of human subjects.

Reducing the Number of Stimuli
Next, we used our method to examine the effects of reducing the number of stimuli and of the
choice of dilutions relative to the threshold distribution of the population. We evaluated de-
signs using 12, 8, and 6 stimuli, carefully selecting their dilutions to cover the range of thresh-
olds, as well as targeting specific areas of the distribution. Like before, a sample size of 100
subjects with 500 replications was used.

As expected, reducing the number of stimuli reduced the reliability from 0.79 for 12 evenly
distributed dilutions down to 0.65 for only 6 dilutions (Table 1). This was due entirely to reduc-
ing the number of stimuli presented (as opposed to reducing the number of distinct dilutions),
since presenting 6 dilutions each twice (12 stimuli total) yielded nearly identical reliability
(0.81) as 12 distinct dilutions. Interestingly, the reliability is relatively robust to differences in
the selection of dilutions, such as using a smaller range of dilutions under the center of the abil-
ity distribution or shifting the dilutions to one end of the distribution. Only the scenario in
which the dilutions were located exclusively at the tails of the distribution (with none in the
center) yielded a significant decrease in reliability.

Although data from 16 dilutions can be analyzed by fitting the model separately to each sub-
ject’s data (as done by Lötsch et al.), a smaller number of dilutions requires using a random effects
model as we have done here. Still, as seen in Table 1, we were unable to obtain threshold estimates
in a substantial fraction of replications when using 8 or fewer stimuli, due to the model’s failure
to converge. This problem was nearly eliminated in all but one case (Tails) by moving to a sample
size of 1,000 subjects (Table 2). Similar convergence problems could be avoided in smaller studies
by using Bayesian methods to fit the model, ideally basing the priors on existing data [26].

A plot showing the relationship between the model-estimated threshold and the true thresh-
old for a single replication (n = 100) of both the full 16-dilution design and the 6-dilution de-
sign (with dilutions evenly distributed over the range of dilutions) is shown in Fig. 2 (Panels A
and C). Corresponding Bland-Altman plots (model-estimated threshold minus true threshold
plotted versus true threshold) depicting the difference between the model-estimated and true
threshold together with a LOWESS smoother are also shown in Fig. 2 (Panels B and D). The
correlation between the model-estimated and true thresholds for the 6-dilution design is 0.78
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for this replication, only slightly below the average of 0.81 across all replications. The biggest
difference between the two designs is the conditional bias (i.e., conditional on the true thresh-
old) for the 6-dilution design, which increases toward the tails of the distribution. This condi-
tional bias is a property of the empirical Bayes method we have used to estimate the individual
thresholds, and is due to the individual estimates being shrunk toward the overall mean. The
amount of shrinkage decreases as the reliability of the estimates increases; it is, for example,
substantially reduced if each of the 6 dilutions is presented twice. Despite this, the empirical
Bayes estimates are unconditionally unbiased, thereby permitting estimation of the mean
threshold for the population [27].

Importantly, this shrinkage is beneficial when using the estimated thresholds as a covariate
in the analysis of other variables. Consider an analysis examining the relationship between ol-
faction and another health outcome (for example cognitive function) in which the outcome is
regressed on olfaction threshold, perhaps adjusting for additional covariates. If threshold esti-
mates obtained using the average of the last four reversals (as in the staircase method) or by fit-
ting an IRT separately to the data for each individual (as in Lötsch et al.) are used, the
estimated slope will be biased downward in magnitude, with the amount of bias increasing as
the reliability decreases. This well-known phenomenon is known as regression attenuation or
dilution. However, using the empirical Bayes estimates to measure olfactory threshold can
eliminate this bias [28]. As noted above, this advantage can be achieved regardless of whether
the data are collected using the staircase or constant stimuli methods.

Estimates of Threshold for the U.S. Population of Older Adults
Two-thousand two-hundred and seven NSHAPWave 2 respondents, aged 62–90 at the time of
the interview, completed the 6-dilution n-butanol constant stimuli detection task. Comments

Table 2. Reliability of several constant stimuli protocols based on simulated administration to the 590 normosmic distribution, n = 1,000
subjects with 500 replications.

Number of Stimuli 16 12 8 6 (6)x2a

Evenly Distributed Dilutions Administered 1–16 1–3, 5–7, 9–11, 13–16 2–16 (Even)b 2, 5, 8, 9, 12, 15 (2, 5, 8, 9, 12, 15)x2

Mean Reliabilityc 0.844 0.797 0.709 0.651 0.806

5%, 50%, 95% 0.828, 0.845, 0.860 0.775, 0.796, 0.817 0.682, 0.709, 0.736 0.616, 0.652, 0.680 0.787, 0.806, 0.825

% of Convergence Failures 0.0% 0.0% 6.6% 4.2% 0.0%

Centered Dilutions Administered NAd 5–16 7–14 8–13 (8–13)x2

Mean Reliability 0.809 0.732 0.665 0.772

5%, 50%, 95% 0.791, 0.809, 0.826 0.708, 0.731, 0.755 0.637, 0.664, 0.694 0.753, 0.772, 0.791

% of Convergence Failures 0.0% 0.0% 0.0% 0.0%

Tails Dilutions Administered NA 1–6, 11–16 5–8, 13–16 5–7, 14–16 (5–7, 14–16)x2

Mean Reliability 0.727 0.687 0.555 0.725

5%, 50%, 95% 0.697, 0.727, 0.754 0.662, 0.688, 0.713 0.507, 0.558, 0.597 0.698, 0.725, 0.750

% of Convergence Failures 0.0% 0.0% 31.8% 0.0%

Shifted Dilutions Administered NA 1–12 1, 3, 5, 7–11 1, 3, 5, 7, 9, 11 (1, 3, 5, 7, 9, 11)x2

Mean Reliability 0.796 0.733 0.644 0.783

5%, 50%, 95% 0.775, 0.796, 0.815 0.709, 0.733, 0.755 0.614, 0.644, 0.672 0.761, 0.783, 0.803

% of Convergence Failures 0.0% 0.0% 4.2% 0.0%

aThis configuration presents the identical 6 dilutions used for a given protocol twice for a total of 12 stimuli
bA configuration using 8 odd dilutions yielded similar results
cAll reliabilities have a standard error � 0.001
dNA = not applicable.

doi:10.1371/journal.pone.0118589.t002
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from field interviewers indicated that respondents reacted favorably to the olfactory protocol
[29].

As expected, the estimated mean threshold for older adults in the U.S. was substantially
lower than for the normosmic sample (2.4 vs. 9.4), while the estimated standard deviation was
only slightly smaller (3.0 vs. 3.6). The estimated slope parameter was 0.76, indicating that the
probability of a correct response increases less quickly with increasing concentration than for
the normosmics (for whom the slope was estimated to be 1.12). This is due to the fact that
some respondents in this older adult sample may be completely anosmic, and therefore for
them, an increase in concentration does not increase the likelihood of a correct response. Al-
though this could be accommodated by extending the model, fitting such a model would re-
quire more extensive data than are available here (see discussion).

Accuracy and Reliability of the NSHAP Protocol
To evaluate the measurement properties of the NSHAP protocol, we performed a computer
simulation study in the same manner as described above. Although the GLLAMMmodel fit to
the NSHAP data assumes a Normal distribution of olfactory thresholds, the estimated Normal
distribution with mean 2.4 and standard deviation 3.0 corresponds to 12% of the population
having a threshold of 16% n-butanol (pen-1) or stronger and 7% of the population having a
threshold of 32% n-butanol (pen-2) or stronger.

Fig 2. Scatter and Bland-Altman Plots for Normosmics. A. Scatter plot (plus regression line) of the relationship between the model-estimated thresholds
and the true thresholds for a single replication of the 16-dilution constant stimuli design, with thresholds drawn from 590 normosmic distribution (n = 100). B.
Corresponding Bland-Altman plot with LOWESS smoother of the 16-dilution constant stimuli design, with thresholds drawn from 590 normosmic distribution
(n = 100). C. Scatter plot (plus regression line) of the relationship between the model-estimated thresholds and the true thresholds for a single replication of
the 6-dilution constant stimuli design, with thresholds drawn from 590 normosmic distribution (n = 100). The 6 dilutions are evenly distributed across the
range of possible thresholds and the administered dilution steps are noted on the lower x-axis. D. Corresponding Bland-Altman plot with LOWESS smoother
of the 6-dilution (evenly distributed) constant stimuli design, with thresholds drawn from 590 normosmic distribution (n = 100).

doi:10.1371/journal.pone.0118589.g002
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Given that thresholds of 4% n-butanol or greater are often considered indicative of func-
tional anosmia, we substituted a three-parameter gamma distribution with shape parameter
3.35, scale parameter 1.61 and location parameter-3 (Fig. 3). This distribution has the same
mean and standard deviation as the estimated Normal distribution, but its positively-skewed
shape is more likely to match the distribution of actual thresholds in this population. In partic-
ular, according to this distribution, 9% of the population has a threshold of 16% n-butanol or
greater, only 1% has a threshold of 32% or greater, and none has a threshold of 64% or greater.
The estimated slope parameter of 0.76 was used to simulate individual responses. A sample
size of 2,000 respondents was used to approximate the NSHAP sample, and as before, 500 rep-
lications per condition were performed.

The mean correlation between the model-estimated thresholds from data collected using
the NSHAP protocol and the true thresholds was 0.75, yielding an estimated reliability for the
NSHAP protocol among older adults of 0.56 (Table 3, row 3). Surprisingly, the reliability was
only slightly higher when administering the full 16 dilutions used by Lötsch et al. (0.65;
Table 3, row 1). This is due to the fact that many of those dilutions are far from the center of
the threshold distribution for older adults. However, reliabilities for other possible 6-dilution
protocols were considerably lower; for example, 6 dilutions chosen evenly from across the full
range of standard dilutions (a plausible approach in the absence of any information about the
study population) yielded a reliability of only 0.36.

A plot showing the relationship of the model-estimated thresholds for the NSHAP 6-dilu-
tion constant stimuli protocol and the true thresholds for a single replication is shown in
Fig. 4A, and a corresponding Bland-Altman plot with LOWESS smoother is shown in Fig. 4B.
The model-estimated thresholds are unconditionally unbiased (that is, for the sample as a

Fig 3. Distribution of Thresholds for Normosmics and NSHAP. Threshold distributions used for simulations, based on model-estimated distributions for
the 590 normosmic sample and the NSHAPWave 2 sample (n = 2,207) of older adults. The means and standard deviations for both samples are as
estimated by the IRT model; the Normal distribution for the NSHAP sample has been replaced by a gamma distribution with identical mean and standard
deviation, to more closely approximate the likely distribution of thresholds in the population.

doi:10.1371/journal.pone.0118589.g003
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whole), but as with the evenly distributed 6-dilution design administered to normosmics
(Fig. 2, Panel D), the conditional bias increases toward the tails of the distribution—especially
at the weak end, due to the lack of pens with weak concentrations. As a result, the method un-
derestimates the ability of the best smellers, though these represent a relatively small propor-
tion of the population of older adults.

Note that the apparent gap in Fig. 4A between a model-estimated threshold of 6.1 and the
next highest estimated threshold of 4.4 (as well as the corresponding gap in Fig. 4B) is an arti-
fact of the inherent discreteness in using only 6 stimuli, yielding a total of only 64 possible re-
sponse patterns. Although the 63 response patterns corresponding to 0–5 correct items yield
estimated thresholds which overlap (for example, a response pattern with 5 dilutions correctly
detected may yield an estimated threshold similar to a response pattern with only 4 dilutions
correctly detected, depending on where the correct responses appear), with only 6 stimuli there
are no response patterns to fill the gap between 6 correct and the next highest pattern (5 correct
responses with one error at the weakest dilution).

Finally, when the full staircase method (with 16 dilutions) is administered via simulation to
the NSHAP distribution and scored in the standard way (average of the last four reversals), the
reliability is actually lower than for the NSHAP 6-dilution protocol (reliability = 0.41; Fig. 4,
Panel C), and the conditional bias at the low end of the threshold distribution where the odor-
ant concentrations are strongest is greater (Fig. 4, Panel D). This results from the limitation in
the standard scoring method identified above, by which two or more erroneous reversals early
on among the weaker dilutions can lead to respondents with relatively poor olfaction receiving
relatively high threshold estimates representative of better smellers (Fig. 1, Panel B)—a tenden-
cy that is exacerbated in the NSHAP sample due to the high proportion with poor olfaction. It
is important to recognize that this is a limitation of the scoring procedure only, and that apart
from the time and training required, there is no problem in principle with using the staircase

Table 3. Reliability of constant stimuli protocols based on simulated administration to the NSHAP Wave 2 distribution, n = 2,000 respondents
with 500 replications.

Number of Stimuli 16 6

Evenly Distributed Dilutions Administered 1–16 2, 5, 8, 9, 12, 15

Mean Reliabilitya 0.648 0.358

5%, 50%, 95% 0.622, 0.648, 0.671 0.321, 0.361, 0.395

% of Convergence Failures 0.0% 9.2%

Centered Dilutions Administered NAb 8–13

Mean Reliability 0.125

5%, 50%, 95% 0.065, 0.126, 0.172

% of Convergence Failures 60.2%

NSHAP Protocol Dilutions Administered NA 0, 1, 2, 4, 5, 6

Mean Reliability 0.558

5%, 50%, 95% 0.534, 0.558, 0.581

% of Convergence Failures 0.0%

Shifted Dilutions Administered NA 0, 2, 4, 6, 8, 10

Mean Reliability 0.486

5%, 50%, 95% 0.458, 0.486, 0.515

% of Convergence Failures 0.0%

aAll reliabilities have a standard error � 0.001
bNA = not applicable.

doi:10.1371/journal.pone.0118589.t003
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method to collect data from a sample of older adults (although the addition of one or more
pens with stronger concentrations would increase the ability to discriminate among the poorest
smellers). However, once the data have been collected, using the IRT model to estimate individ-
ual thresholds will reduce bias and increase precision.

Public Availability of Data and Software
The method described here for estimating the performance of a specific staircase or constant
stimuli protocol intended to assess olfactory threshold can be easily applied by researchers who
wish to evaluate or design a specific assessment (not limited to olfaction) for their own pur-
poses. As illustrated here, the first step in designing a new protocol is to acquire information
about the threshold distribution in the target population. Hummel et al. [13] provide norma-
tive data for n-butanol threshold, including means, standard deviations and percentiles for
threshold distribution by age and gender. The NSHAPWave 2 data described here are publicly
available through the National Archive of Computerized Data on Aging (NACDA, https://
www.icpsr.umich.edu/icpsrweb/NACDA/) [30], and provide data for the general population of
home-dwelling, older adults up through age 90. Even if one is focusing on a unique or narrowly
defined subpopulation for which he or she already has data, consulting publicly-available re-
ports and data sources is encouraged, especially if one’s own data are from a small sample. Al-
though data on n-butanol threshold may be informative in planning a threshold testing

Fig 4. Scatter and Bland-Altman Plots for NSHAP. A. Scatter plot (plus regression line) of the relationship between the model-estimated thresholds and
the true thresholds for a single replication of the 6-dilution NSHAP constant stimuli protocol (dilutions administered are noted on the lower x-axis), with
thresholds drawn from a gamma distribution with mean and variance matching those estimated from the NSHAP sample (n = 2,000). B. Corresponding
Bland-Altman plot with LOWESS smoother of the NSHAP 6-dilution protocol, with thresholds drawn from a gamma distribution with mean and variance
matching those estimated from the NSHAP sample (n = 2,000). C. Scatter plot (plus regression line) of the relationship between the staircase-estimated
thresholds and the true thresholds for a single replication of the 16-dilution staircase design, with thresholds drawn from a gamma distribution with mean and
variance matching those estimated from the NSHAP sample (n = 2,000). D. Corresponding Bland-Altman plot with LOWESS smoother of the 16-dilution
staircase design, with thresholds drawn from a gamma distribution with mean and variance matching those estimated from the NSHAP sample (n = 2,000).

doi:10.1371/journal.pone.0118589.g004
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protocol to be used with a different odorant, potential differences between odors in sensitivity
should be considered.

The software used here to simulate both the staircase and constant stimuli protocols is avail-
able at http://rcg-software.uchicago.edu/stata in a package called olfactsim for use with Stata,
and includes a description of the steps necessary to evaluate a new or existing protocol [31].
Given a pre-specified threshold distribution, this package is able to simulate the administration
of both the staircase and constant stimuli protocols, each with an arbitrary set of dilutions (rep-
etition of one or more dilutions when simulating the constant stimuli protocol is also possible).
In addition to exploring several designs of the maximum length that can be administered to ac-
tual subjects, we also recommend trying several threshold distributions with mean and vari-
ance varied around the values estimated for the target population. Doing so facilitates an
examination of the sensitivity of the results to miss-specifying the population distribution.

Discussion
We have shown here how computer simulation can be used to evaluate the measurement prop-
erties of tests of olfactory threshold without the cost or time required to conduct a study with
human subjects. This method is capable of reproducing estimates of reliability obtained from
human subjects studies, with the possible exception of a relatively small component of variabil-
ity due to short-term variation within subjects themselves and/or in the physical administra-
tion of the test (due to slight variations in the pens or the way in which they are administered).
This additional variability could be estimated by comparing the test-retest reliability estimated
from human subjects studies to the reliability estimated from simulation, and incorporated
into the reliability estimates generated from the latter, if desired.

Unlike the staircase method, assessment based on the method of constant stimuli requires
using an IRT model to obtain individual threshold estimates. This model can also be fit to data
collected using the staircase method to obtain less biased and more precise threshold estimates
than the standard scoring method. Although such a model can be fit separately to the data for
each subject if the number of stimuli is large, a random effects version of the model must be
used when the number of stimuli is small.

Moreover, the shrinkage estimates of threshold—obtained either by using empirical Bayes
methods following maximum likelihood estimation of a random effects model, as done here, or by
using a hierarchical Bayesian model—yield threshold estimates which, when used as a covariate in
a subsequent regression model, eliminate attenuation bias due to measurement error. Still, for those
researchers who want an immediate measure of olfactory performance without having to fit a sta-
tistical model, the correlation between the model-estimated thresholds (with multiple imputation
for non-response) and the number of correct responses (0–6, treating don’t know and refused as in-
correct) in the NSHAP dataset is 0.92. Thus, the latter may be adequate in certain cases, such as
when the objective is merely to demonstrate a relationship between olfaction and another variable.

There are ways in which the IRT model used here might be extended. For example, we do
not consider a learning effect, though estimating such an effect would require that the order of
presentation of dilutions be varied across subjects, and any learning effect is likely to affect only
the first few presentations. More important, perhaps, is the fact that both the IRT model and
our simulations assume that everyone has an actual threshold value (a dilution which they are
able to detect with probability 2

3
), therefore excluding the possibility of subjects who are truly an-

osmic (unable to detect the odor at any concentration). A mixture model [32] in which a propor-
tion of subjects (to be estimated from the data) are truly anosmic may match reality more closely
—especially among older adults—however estimating such a model would likely require several
additional dilutions, possibly with repetition, at the low end (high concentration).
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To our knowledge, our results show for the first time that home-dwelling older adults have
substantially worse olfactory sensitivity, a finding that has important implications for the health
and safety of older adults and the resulting public health burden. Further, these results confirm
the value of the constant stimuli method for obtaining valid and reliable estimates of olfactory
threshold in cases where restrictions on the length and/or complexity of the test preclude ad-
ministering the staircase method. We have demonstrated that even with only 6 dilutions each
presented once, reliabilities in the range of 0.56–0.67 can be achieved, thereby extending the pos-
sibility of olfaction threshold measurement to a much wider range of research settings. When
possible, however, higher reliability is generally desirable, and may be achieved even with only
6 dilutions by presenting each dilution twice. Finally, it should be noted that we did not examine
the reliability of model-based estimates using data collected with the staircase method, nor other
areas in which the staircase method may have an advantage due to its dynamic presentation of
dilutions. For example, the staircase method has successfully been employed using the Sniffin’
Sticks in a wide range of clinical research [33–35]. Thus, when possible, researchers may still
wish to use this method, though ideally with model-based threshold estimates.

Doty et al. [36] called attention to the importance of reliability in olfaction assessments, fo-
cusing on the relationship between reliability and the number of stimuli administered. The re-
sults reported here underscore the critical importance not only of the total number of stimuli,
but also of the choice of dilutions relative to the threshold distribution of the population. This
is evident in the fact that for the NSHAP population, 6 dilutions spread evenly across the range
of dilutions yielded considerably lower reliability than 6 dilutions concentrated under the larg-
est area of the NSHAP threshold distribution (0.36 versus 0.56). Further, 6 dilutions picked
from the center of the dilution range with only minimal coverage of one tail of the NSHAP dis-
tribution yielded the lowest reliability reported (0.13). Lastly, even 16 dilutions when spread
across the full range only increased the reliability to 0.65. Thus, researchers designing their
own measurement protocol should consider carefully the olfactory ability of the population to
which it will be administered.

In this investigation we have focused on overall reliability, since a main goal of the NSHAP
study is to examine the relationship between olfactory threshold and other variables. However,
those wishing to use olfactory threshold measurement for other purposes (for example, in a clinical
setting) will probably want to focus on other performance aspects, such as bias for individual
threshold measurements and the sensitivity and specificity associated with specific cutoffs. The
computer simulation method described here could be used equally well to examine these quantities.
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