Juggling on a High Wire: Multitasking Effects on Performance

Rachel F. Adler, Northeastern Illinois University
Raquel Benbunan-Fich


In this study, we develop a theoretical model that predicts an inverted-U relationship between multitasking and performance. The model is tested with a controlled experiment using a custom-developed application. Participants were randomly assigned to either a control condition, where they had to perform tasks in sequence, or an experimental condition, where they could discretionarily switch tasks by clicking on tabs. Our results show an inverted-U pattern for performance efficiency (productivity) and a decreasing line for performance effectiveness (accuracy). The results of this study indicate that the nature of the relation between multitasking and performance depends upon the metric used. If performance is measured with productivity, different multitasking levels are associated with an inverted-U curve where medium multitaskers perform significantly better than both high and low multitaskers. However, if performance is measured with accuracy of results, the relation is a downward slopping line, in which increased levels of multitasking lead to a significant loss in accuracy. Metaphorically speaking, juggling multiple tasks is much more difficult while balancing on a high wire, where performance mishaps can have serious consequences.