Nitrogen dioxide pollution exposure is associated with olfactory dysfunction in older U.S. adults

Document Type


Publication Date



Background: Olfactory dysfunction has profound effects on quality of life, physical and social function, and mortality itself. Nitrogen dioxide (NO2) is a pervasive air pollutant that is associated with respiratory diseases. Given the olfactory nerve's anatomic exposure to airborne pollutants, we investigated the relationship between NO2 exposure and olfactory dysfunction. Methods: The ability to identify odors was evaluated using a validated test in respondents from the National Social Life, Health, and Aging Project (NSHAP), a representative probability sample of home-dwelling, older U.S. adults age 57 to 85 years. Exposure to NO2 pollution was assessed using measurements obtained from the U.S. Environmental Protection Agency (EPA) Aerometric Information Retrieval System (AIRS) ambient monitoring site closest to each respondent's home. We tested the association between NO2 exposure and olfactory dysfunction using multivariate logistic regression. Results: Among older adults in the United States, 22.6% had impaired olfactory function, defined as ≤3 correct (out of 5) on the odor identification test. Median NO2 exposure during the 365 days prior to the interview date was 14.7 ppb (interquartile range [IQR], 10.8 to 19.7 ppb). An IQR increase in NO2 exposure was associated with increased odds of olfactory dysfunction (OR, 1.35; 95% CI, 1.07 to 1.72), adjusting for age, gender, race/ethnicity, education, cognition, comorbidity, smoking, and season of the home interview (n = 1823). Conclusion: We show for the first time that NO2 exposure is associated with olfactory dysfunction in older U.S. adults. These results suggest an important role for NO2 exposure on olfactory dysfunction, and, potentially, nasal disease more broadly.



Publication Title

International Forum of Allergy and Rhinology

Volume Number


Issue Number


First Page


Last Page




This document is currently not available here.