Title
Bioenergetic Constraints on Microbial Hydrogen Utilization in Precambrian Deep Crustal Fracture Fluids
Document Type
Article
Publication Date
2-7-2018
Abstract
Precambrian Shield rocks host the oldest fracture fluids on Earth, with residence times up to a billion years or more. Water–rock reactions in these fracture systems over geological time have produced highly saline fluids, which can contain millimolar concentrations of H2. Mixing of these ancient Precambrian fluids with meteoric or palaeo-meteoric water can occur through tectonic fracturing, providing microbial inocula and redox couples to fuel blooms of subsurface growth. Here, we present geochemical and microbiological data from a series of borehole fluids of varying ionic strength (0.6–6.4 M) from the Thompson Mine (Manitoba) within the Canadian Precambrian Shield. Thermodynamic calculations demonstrate sufficient energy for H2-based catabolic reactions across the entire range of ionic strengths during mixing of high ionic strength fracture fluids with meteoric water, although microbial H2 consumption and cultivable H2-utilizing microbes were only detected in fluids of ≤1.9 M ionic strength. This pattern of microbial H2 utilization can be explained by the higher potential bioenergetic cost of organic osmolyte synthesis at increasing ionic strengths. We propose that further research into the bioenergetics of osmolyte regulation in halophiles is warranted to better constrain the habitability zones of hydrogenotrophic ecosystems in both terrestrial subsurface, including potential future radioactive waste disposal sites, and other planetary body crustal environments, including Mars.
DOI
10.1080/01490451.2017.1333176
Publication Title
Geomicrobiology Journal
Volume Number
35
Issue Number
2
First Page
108
Last Page
119
ISSN
01490451
Recommended Citation
Telling, Jon; Voglesonger, Ken; Sutcliffe, Chelsea N.; Lacrampe-Couloume, Georges; Edwards, Elizabeth; and Sherwood Lollar, Barbara, "Bioenergetic Constraints on Microbial Hydrogen Utilization in Precambrian Deep Crustal Fracture Fluids" (2018). Earth Science Faculty Publications. 4.
https://neiudc.neiu.edu/esci-pub/4